期刊论文详细信息
Revista Brasileira de Ciência do Solo
Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production
Jardes Bragagnolo2  Telmo Jorge Carneiro Amado1  Rodrigo Da Silveira Nicoloso1  Joerg Jasper1  Junior Kunz1  Tiago De Gregori Teixeira1 
[1],Federal University of Santa MariaSanta Maria RS ,Brazil
关键词: site-specific management;    optical spectrometry;    precision agriculture;    soil fertility;    manejo sítio-específico;    espectrometria óptica;    agricultura de precisão;    fertilidade do solo;   
DOI  :  10.1590/S0100-06832013000500018
来源: SciELO
PDF
【 摘 要 】
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130054580ZK.pdf 454KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:10次