Anais da Academia Brasileira de Ciências | |
The hypersurfaces with conformal normal Gauss map in Hn+1 and S1n+1 | |
Shuguo Shi1  | |
[1] ,Shandong University School of Mathematics and System SciencesP.R. ,China | |
关键词: fourth fundamental form; conformal normal Gauss map; generalized Gauss map; duality property; de Sitter Gauss map; Monge-Ampère equation; quarta forma fundamental; aplicação normal de Gauss conforme; aplicação de Gauss generalizada; propriedade de dualidade; aplicação de Gauss de Sitter; equação de Monge-Ampère; | |
DOI : 10.1590/S0001-37652008000100002 | |
来源: SciELO | |
【 摘 要 】
In this paper, we introduce the fourth fundamental forms for hypersurfaces in Hn+1 and space-like hypersurfaces in S1n+1, and discuss the conformality of the normal Gauss map of the hypersurfaces in Hn+1 and S1n+1. Particularly, we discuss the surfaces with conformal normal Gauss map in H³ and S³1, and prove a duality property. We give a Weierstrass representation formula for space-like surfaces in S³1 with conformal normal Gauss map. We also state the similar results for time-like surfaces in S³1. Some examples of surfaces in S³1 with conformal normal Gauss map are given and a fully nonlinear equation of Monge-Ampère type for the graphs in S³1 with conformal normal Gauss map is derived.
【 授权许可】
CC BY
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202005130000602ZK.pdf | 186KB | download |