期刊论文详细信息
BMC Plant Biology
Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis
Suo-Min Wang1  Ai-Ke Bao1  Yan-Nong Cui1  Le Zhang1  Huan Guo1 
[1] 0000 0000 8571 0482, grid.32566.34, State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020, Lanzhou, People’s Republic of China;
关键词: Halophyte;    Atriplex canescens;    Salt tolerance;    Transcriptomic analysis;    Differentially expressed gene;   
DOI  :  10.1186/s12870-019-1827-6
来源: publisher
PDF
【 摘 要 】

BackgroundAtriplex canescens is a typical C4 secretohalophyte with salt bladders on the leaves. Accumulating excessive Na+ in tissues and salt bladders, maintaining intracellular K+ homeostasis and increasing leaf organic solutes are crucial for A. canescens survival in harsh saline environments, and enhanced photosynthetic activity and water balance promote its adaptation to salt. However, the molecular basis for these physiological mechanisms is poorly understood. Four-week-old A. canescens seedlings were treated with 100 mM NaCl for 6 and 24 h, and differentially expressed genes in leaves and roots were identified, respectively, with Illumina sequencing.ResultsIn A. canescens treated with 100 mM NaCl, the transcripts of genes encoding transporters/channels for important nutrient elements, which affect growth under salinity, significantly increased, and genes involved in exclusion, uptake and vacuolar compartmentalization of Na+ in leaves might play vital roles in Na+ accumulation in salt bladders. Moreover, NaCl treatment upregulated the transcripts of key genes related to leaf organic osmolytes synthesis, which are conducive to osmotic adjustment. Correspondingly, aquaporin-encoding genes in leaves showed increased transcripts under NaCl treatment, which might facilitate water balance maintenance of A. canescens seedlings in a low water potential condition. Additionally, the transcripts of many genes involved in photosynthetic electron transport and the C4 pathway was rapidly induced, while other genes related to chlorophyll biosynthesis, electron transport and C3 carbon fixation were later upregulated by 100 mM NaCl.ConclusionsWe identified many important candidate genes involved in the primary physiological mechanisms of A. canescens salt tolerance. This study provides excellent gene resources for genetic improvement of salt tolerance of important crops and forages.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202004235713819ZK.pdf 2613KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:4次