| Parasites & Vectors | |
| Low diversity of Angiostrongylus cantonensis complete mitochondrial DNA sequences from Australia, Hawaii, French Polynesia and the Canary Islands revealed using whole genome next-generation sequencing | |
| Kristýna Hrazdilová1  Barbora Fecková2  David Modrý3  Richard Malik4  John Walker5  Jan Šlapeta6  Barbora Červená7  Rogan Lee8  Aron Martin Alonso9  Pilar Foronda1,10  Chris N. Niebuhr1,11  | |
| [1] 0000 0001 1009 2154, grid.412968.0, CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic;0000 0001 1009 2154, grid.412968.0, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic;0000 0001 1009 2154, grid.412968.0, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic;Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic;0000 0004 1936 834X, grid.1013.3, Centre for Veterinary Education, University of Sydney, 2006, Sydney, NSW, Australia;0000 0004 1936 834X, grid.1013.3, Marie Bashir Institute for infectious Diseases and Biosecurity, University of Sydney, 2006, Sydney, NSW, Australia;0000 0004 1936 834X, grid.1013.3, Sydney School of Veterinary Science, University of Sydney, 2006, Sydney, NSW, Australia;0000 0004 1936 834X, grid.1013.3, Sydney School of Veterinary Science, University of Sydney, 2006, Sydney, NSW, Australia;0000 0001 1009 2154, grid.412968.0, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic;0000 0001 1015 3316, grid.418095.1, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic;0000 0004 1936 834X, grid.1013.3, Westmead Clinical School, University of Sydney, 2145, Sydney, NSW, Australia;0000000121060879, grid.10041.34, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, C/Astrofisico F Sanchez, s/n, Tenerife, 38203, La Laguna, Canary Islands, Spain;0000000121060879, grid.10041.34, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, C/Astrofisico F Sanchez, s/n, Tenerife, 38203, La Laguna, Canary Islands, Spain;0000000121060879, grid.10041.34, Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Canary Islands, Spain;USDA-APHIS-WS, National Wildlife Research Center, PO Box 10880, Hawaii Field Station, 96721, Hilo, HI, USA;0000 0001 0747 5306, grid.419186.3, Manaaki Whenua-Landcare Research, PO Box 69040, 7608, Lincoln, New Zealand; | |
| 关键词: Rat lungworm; Mitochondrial genome; Genetic diversity; Invasive species; Next-generation sequencing; Rat lungworm; cox; Rattus; | |
| DOI : 10.1186/s13071-019-3491-y | |
| 来源: publisher | |
PDF
|
|
【 摘 要 】
BackgroundRats (Rattus spp.) invaded most of the world as stowaways including some that carried the rat lungworm, Angiostrongylus cantonensis, the cause of eosinophilic meningoencephalitis in humans and other warm-blooded animals. A high genetic diversity of A. cantonensis based on short mitochondrial DNA regions is reported from Southeast Asia. However, the identity of invasive A. cantonensis is known for only a minority of countries. The affordability of next-generation sequencing for characterisation of A. cantonensis genomes should enable new insights into rat lung worm invasion and parasite identification in experimental studies.MethodsGenomic DNA from morphologically verified A. cantonensis (two laboratory-maintained strains and two field isolates) was sequenced using low coverage whole genome sequencing. The complete mitochondrial genome was assembled and compared to published A. cantonensis and Angiostrongylus malaysiensis sequences. To determine if the commonly sequenced partial cox1 can unequivocally identify A. cantonensis genetic lineages, the diversity of cox1 was re-evaluated in the context of the publicly available cox1 sequences and the entire mitochondrial genomes. Published experimental studies available in Web of Science were systematically reviewed to reveal published identities of A. cantonensis used in experimental studies.ResultsNew A. cantonensis mitochondrial genomes from Sydney (Australia), Hawaii (USA), Canary Islands (Spain) and Fatu Hiva (French Polynesia), were assembled from next-generation sequencing data. Comparison of A. cantonensis mitochondrial genomes from outside of Southeast Asia showed low genetic diversity (0.02–1.03%) within a single lineage of A. cantonensis. Both cox1 and cox2 were considered the preferred markers for A. cantonensis haplotype identification. Systematic review revealed that unequivocal A. cantonensis identification of strains used in experimental studies is hindered by absence of their genetic and geographical identity.ConclusionsLow coverage whole genome sequencing provides data enabling standardised identification of A. cantonensis laboratory strains and field isolates. The phenotype of invasive A. cantonensis, such as the capacity to establish in new territories, has a strong genetic component, as the A. cantonensis found outside of the original endemic area are genetically uniform. It is imperative that the genotype of A. cantonensis strains maintained in laboratories and used in experimental studies is unequivocally characterised.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202004230109712ZK.pdf | 1415KB |
PDF