期刊论文详细信息
International Journal of Environmental Research and Public Health
Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects
L. E. Murr1  K. F. Soto1  K. M. Garza2  P. A. Guerrero1  F. Martinez1  E. V. Esquivel1  D. A. Ramirez1  Y. Shi1  J. J. Bang3 
[1] Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA;Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA;Department of Mechanical and Industrial Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
关键词: TEM analysis;    Carbonaceous nanoparticulates;    Carbon nanotube aggregates;    Clinical and city-wide surveys;    Asthma incidence;    Cytotoxicity assays;   
DOI  :  10.3390/ijerph2006030007
来源: mdpi
PDF
【 摘 要 】

In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined.

【 授权许可】

CC BY   
© 2006 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190059904ZK.pdf 1724KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:42次