期刊论文详细信息
Remote Sensing
Deriving Ocean Surface Drift Using Multiple SAR Sensors
Antony K. Liu1 
[1] NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
关键词: ocean surface drift;    SAR;    wavelet transform;    feature tracking;    ship wake;   
DOI  :  10.3390/rs1030266
来源: mdpi
PDF
【 摘 要 】

Tracking and monitoring ocean features which have short coherent time periods from sequential satellite images requires that the images have both very high spatial resolutions and short temporal sampling intervals (i.e., repeated cycles). Satellite images from a single sensor in a polar-orbiting satellite usually cannot meet these requirements since high spatial resolution of the sensor may result in relatively long temporal sampling interval and vice versa, such as the case of Synthetic Aperture Radar (SAR). This paper presents a new multi-sensor approach to overcome the long temporal sampling interval associated with a single SAR sensor while taking advantage of high spatial resolution of SAR images for the application of ocean feature tracking. Currently, there are two SAR sensors on different satellites, the European Remote Sensing Satellite-2 (ERS-2) and the ENVIronment SATellite (ENVISAT), having acquisition time offset around 28 minutes with almost exactly the same path. That is, ERS-2 is following ENVISAT with a 28-minutes delay, which is a good time-scale for ocean mesoscale feature tracking. A pair of SAR images from ERS-2 and ENVISAT collected on April 27, 2005 has been chosen to track ocean surface features by using wavelet analysis. As demonstrated in the case studies, this technique is robust and capable to derive ocean surface drift near an oil slick and around a big eddy in the South China Sea (SCS).

【 授权许可】

CC BY   
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190056770ZK.pdf 692KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:13次