期刊论文详细信息
Entropy
Imaging Velocimetry Measurements for Entropy Production in a Rotational Magnetic Stirring Tank and Parallel Channel Flow
Greg F. Naterer1 
[1] University of Ontario Institute of Technology, Oshawa, Ontario, L1H 7K4, Canada; E-mail:
关键词: entropy production;    particle image velocimetry;   
DOI  :  10.3390/e11030334
来源: mdpi
PDF
【 摘 要 】

An experimental design is presented for an optical method of measuring spatial variations of flow irreversibilities in laminar viscous fluid motion. Pulsed laser measurements of fluid velocity with PIV (Particle Image Velocimetry) are post-processed to determine the local flow irreversibilities. The experimental technique yields whole-field measurements of instantaneous entropy production with a non-intrusive, optical method. Unlike point-wise methods that give measured velocities at single points in space, the PIV method is used to measure spatial velocity gradients over the entire problem domain. When combined with local temperatures and thermal irreversibilities, these velocity gradients can be used to find local losses of energy availability and exergy destruction. This article focuses on the frictional portion of entropy production, which leads to irreversible dissipation of mechanical energy to internal energy through friction. Such effects are significant in various technological applications, ranging from power turbines to internal duct flows and turbomachinery. Specific problems of a rotational stirring tank and channel flow are examined in this paper. By tracking the local flow irreversibilities, designers can focus on problem areas of highest entropy production to make local component modifications, thereby improving the overall energy efficiency of the system.

【 授权许可】

CC BY   
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190056702ZK.pdf 667KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:14次