Algorithms | |
Radial Basis Function Cascade Correlation Networks | |
Weiying Lu1  | |
[1] Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; E-mail | |
关键词: cascade correlation; radial basis function; artificial neural networks; bootstrap Latin partition; | |
DOI : 10.3390/a2031045 | |
来源: mdpi | |
![]() |
【 摘 要 】
A cascade correlation learning architecture has been devised for the first time for radial basis function processing units. The proposed algorithm was evaluated with two synthetic data sets and two chemical data sets by comparison with six other standard classifiers. The ability to detect a novel class and an imbalanced class were demonstrated with synthetic data. In the chemical data sets, the growth regions of Italian olive oils were identified by their fatty acid profiles; mass spectra of polychlorobiphenyl compounds were classified by chlorine number. The prediction results by bootstrap Latin partition indicate that the proposed neural network is useful for pattern recognition.
【 授权许可】
CC BY
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190056287ZK.pdf | 386KB | ![]() |