期刊论文详细信息
Sensors
Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing
Randy L. Vander Wal3  Gordon M. Berger1  Michael J. Kulis1  Gary W. Hunter2  Jennifer C. Xu2 
[1] The National Center for Space Exploration Research (NCSER), 21000 Brookpark Road, Cleveland, OH 44135, USA; E-Mails:;NASA Glenn Research Center, 21000 Brookpark Road Cleveland, OH 44135, USA; E-Mails:;Penn State University, Department of Energy and Mineral Engineering, The Energy Institute and The Penn State Institutes of Energy and The Environment (PSIEE), 203 Hosler Bldg. University Park, PA 16802, USA
关键词: metal oxide;    gas sensor;    nanostructure;    integration;    nanorods;    catalyst;    gas detector;    gas analysis;   
DOI  :  10.3390/s91007866
来源: mdpi
PDF
【 摘 要 】

A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

【 授权许可】

CC BY   
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190056143ZK.pdf 1454KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:9次