期刊论文详细信息
Symmetry
Supersymmetry of Generalized Linear Schrödinger Equations in (1+1) Dimensions
Axel Schulze-Halberg1 
[1] 1Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408, USA 2Escuela Superior de Cómputo, Instituto Politécnico Nacional, Col. Lindavista, 07738 México DF, Mexico
关键词: time-dependent Schrödinger equation;    supersymmetry;    Darboux transformation;   
DOI  :  10.3390/sym1020115
来源: mdpi
PDF
【 摘 要 】

We review recent results on how to extend the supersymmetry SUSY normalism in Quantum Mechanics to linear generalizations of the time-dependent Schrödinger equation in (1+1) dimensions. The class of equations we consider contains many known cases, such as the Schrödinger equation for position-dependent mass. By evaluating intertwining relations, we obtain explicit formulas for the interrelations between the supersymmetric partner potentials and their corresponding solutions. We review reality conditions for the partner potentials and show how our SUSY formalism can be extended to the Fokker-Planck and thenonhomogeneous Burgers equation.

【 授权许可】

CC BY   
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202003190056126ZK.pdf 266KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:13次