期刊论文详细信息
Pharmaceuticals
The Molecular Mechanisms of Anesthetic Action: Updates and Cutting Edge Developments from the Field of Molecular Modeling
关键词: anesthesia;    molecular mechanism;    molecular modeling;    computational chemistry;   
DOI  :  10.3390/ph3072178
来源: mdpi
PDF
【 摘 要 】

For over 160 years, general anesthetics have been given for the relief of pain and suffering. While many theories of anesthetic action have been purported, it has become increasingly apparent that a significant molecular focus of anesthetic action lies within the family of ligand-gated ion channels (LGIC’s). These protein channels have a transmembrane region that is composed of a pentamer of four helix bundles, symmetrically arranged around a central pore for ion passage. While initial and some current models suggest a possible cavity for binding within this four helix bundle, newer calculations postulate that the actual cavity for anesthetic binding may exist between four helix bundles. In either scenario, these cavities have a transmembrane mode of access and may be partially bordered by lipid moieties. Their physicochemical nature is amphiphilic. Anesthetic binding may alter the overall motion of a ligand-gated ion channel by a “foot-in-door” motif, resulting in the higher likelihood of and greater time spent in a specific channel state. The overall gating motion of these channels is consistent with that shown in normal mode analyses carried out both in vacuo as well as in explicitly hydrated lipid bilayer models. Molecular docking and large scale molecular dynamics calculations may now begin to show a more exact mode by which anesthetic molecules actually localize themselves and bind to specific protein sites within LGIC’s, making the design of future improvements to anesthetic ligands a more realizable possibility.

【 授权许可】

CC BY   
© 2010 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190053143ZK.pdf 516KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:2次