期刊论文详细信息
Sensors
Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation
Sung-Ki Nam1  Jung-Kyun Kim1  Sung-Cheon Cho1 
[1] Department of Mechatronics, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500–712, Korea;
关键词: heat flux sensor;    thermopile;    electro-thermal domain model;    microfluidic application;   
DOI  :  10.3390/s100706594
来源: mdpi
PDF
【 摘 要 】

A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state.

【 授权许可】

CC BY   
© 2010 by the authors licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190053135ZK.pdf 1272KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:17次