Sensors | |
Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors | |
Rong Zhu2  Henggao Ding2  Yan Su1  | |
[1] School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, China; E-Mail:;State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, 100084, China; E-Mail: | |
关键词: micromachined thermal inertial sensor; heat convection; modeling; nonlinearity; | |
DOI : 10.3390/s100908304 | |
来源: mdpi | |
【 摘 要 】
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.
【 授权许可】
CC BY
© 2010 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190052884ZK.pdf | 309KB | download |