期刊论文详细信息
Sensors
Active Integrated Filters for RF-Photonic Channelizers
Amr El Nagdi1  Ke Liu1  Tim P. LaFave1  Louis R. Hunt1  Viswanath Ramakrishna2  Mieczyslaw Dabkowski2  Duncan L. MacFarlane1 
[1] Department of Electrical Engineering, University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083, USA;Department of Mathematical Sciences, University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083, USA
关键词: photonic channelizer;    active filters;    four-port coupler;    state space representation;   
DOI  :  10.3390/s110201297
来源: mdpi
PDF
【 摘 要 】

A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.

【 授权许可】

CC BY   
© 2011 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190050954ZK.pdf 1510KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:9次