期刊论文详细信息
Materials
Simulation of Granular Flows and Pile Formation in a Flat-Bottomed Hopper and Bin, and Experimental Verification
Shinichi Yuu1 
[1] Ootake R. and D. Consulting Office, 1-17-27-508 Ootake, Higashiku, Fukuoka 811-0322, Japan
关键词: granular flow;    granular pile;    simulation;    constitutive equation;    flat-bottomed hopper and bin;    smoothed particle hydrodynamics;    discrete element method;    two-way coupling method;   
DOI  :  10.3390/ma4081440
来源: mdpi
PDF
【 摘 要 】

Granular flows of 200 μm particles and the pile formation in a flat-bottomed hopper and bin in the presence of air and in a vacuum were predicted based on three-dimensional numerically empirical constitutive relations using Smoothed Particle Hydrodynamics and Computational Fluid Dynamics methods. The constitutive relations for the strain rate independent stress have been obtained as the functions of the Almansi strain including the large deformation by the same method as Yuu et al. [1]. The constitutive relations cover the elastic and the plastic regions including the flow state and represent the friction mechanism of granular material. We considered the effect of air on the granular flow and pile by the two-way coupling method. The granular flow patterns, the shapes of piles and the granular flow rates in the evolution are compared with experimental data measured under the same conditions. There was good agreement between these results, which suggests that the constitutive relations and the simulation method would be applicable for predicting granular flows and pile formation with complex geometry including free surface geometry. We describe the mechanisms by which the air decreases the granular flow rate and forms the convergence granular flow below the hopper outlet.

【 授权许可】

CC BY   
© 2011 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190048533ZK.pdf 2596KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:21次