期刊论文详细信息
Molecules
Microfluidic Devices: Useful Tools for Bioprocess Intensification
Marco P.C. Marques1 
[1] 1Department of Bioengineering, Instituto Superior Técnico (IST), Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal 2IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, IST, Lisboa, Portugal
关键词: microfluidic devices;    bioprocess intensification;    modeling and simulation;   
DOI  :  10.3390/molecules16108368
来源: mdpi
PDF
【 摘 要 】

The dawn of the new millennium saw a trend towards the dedicated use of microfluidic devices for process intensification in biotechnology. As the last decade went by, it became evident that this pattern was not a short-lived fad, since the deliverables related to this field of research have been consistently piling-up. The application of process intensification in biotechnology is therefore seemingly catching up with the trend already observed in the chemical engineering area, where the use of microfluidic devices has already been upgraded to production scale. The goal of the present work is therefore to provide an updated overview of the developments centered on the use of microfluidic devices for process intensification in biotechnology. Within such scope, particular focus will be given to different designs, configurations and modes of operation of microreactors, but reference to similar features regarding microfluidic devices in downstream processing will not be overlooked. Engineering considerations and fluid dynamics issues, namely related to the characterization of flow in microchannels, promotion of micromixing and predictive tools, will also be addressed, as well as reflection on the analytics required to take full advantage of the possibilities provided by microfluidic devices in process intensification. Strategies developed to ease the implementation of experimental set-ups anchored in the use of microfluidic devices will be briefly tackled. Finally, realistic considerations on the current advantages and limitation on the use of microfluidic devices for process intensification, as well as prospective near future developments in the field, will be presented.

【 授权许可】

CC BY   
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202003190047874ZK.pdf 680KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:21次