期刊论文详细信息
Remote Sensing
Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification
Tessio Novack1  Thomas Esch1  Hermann Kux2 
[1] German Remote Sensing Data Center (DFD), DLR, Oberpfaffenhofen, D-82234 Weßling, Germany; E-Mail:;Remote Sensing Division (DSR), National Institute for Space Research (INPE), Sao Jose dos Campos, SP-12227-010, Brazil; E-Mail:
关键词: urban remote sensing;    high spatial resolution;    feature selection;    image segmentation;    image classification;   
DOI  :  10.3390/rs3102263
来源: mdpi
PDF
【 摘 要 】

The objective of this study is to compare WorldView-2 (WV-2) and QuickBird-2-simulated (QB-2) imagery regarding their potential for object-based urban land cover classification. Optimal segmentation parameters were automatically found for each data set and the obtained results were quantitatively compared and discussed. Four different feature selection algorithms were used in order to verify to which data set the most relevant object-based features belong to. Object-based classifications were performed with four different supervised algorithms applied to each data set and the obtained accuracies and model performances indexes were compared. Segmentation experiments carried out involving bands exclusively available in the WV-2 sensor generated segments slightly more similar to our reference segments (only about 0.23 discrepancy). Fifty seven percent of the different selected features and 53% of all the 80 selections refer to features that can only be calculated with the additional bands of the WV-2 sensor. On the other hand, 57% of the most relevant features and 63% of the second most relevant features can also be calculated considering only the QB-2 bands. In 10 out of 16 classifications, higher Kappa values were achieved when features related to the additional bands of the WV-2 sensor were also considered. In most cases, classifications carried out with the 8-band-related features generated less complex and more efficient models than those generated only with QB-2 band-related features. Our results lead to the conclusion that spectrally similar classes like ceramic tile roofs and bare soil, as well as asphalt and dark asbestos roofs can be better distinguished when the additional bands of the WV-2 sensor are used throughout the object-based classification process.

【 授权许可】

CC BY   
© 2011 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190047527ZK.pdf 4467KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:23次