期刊论文详细信息
Pharmaceutics
From Mini to Micro Scale—Feasibility of Raman Spectroscopy as a Process Analytical Tool (PAT)
Markus Wirges3  Joshua Müller2  Péter Kása1  Géza Regdon1  Klára Pintye-H༽i1  Klaus Knop3 
[1] Department of Pharmaceutical Technology, University of Szeged, Eotvos u. 6, H-6720 Szeged, Hungary; E-Mails:;Hüttlin GmbH, Hohe-Flum-Strasse 42, D-79650 Schopfheim, Germany; E-Mail:;Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University, Universitätsstr. 1, D-40225 Düsseldorf, Germany; E-Mails:
关键词: mini scale;    micro scale;    active coating;    Raman spectroscopy;    PAT tool;   
DOI  :  10.3390/pharmaceutics3040723
来源: mdpi
PDF
【 摘 要 】

Background

Active coating is an important unit operation in the pharmaceutical industry. The quality, stability, safety and performance of the final product largely depend on the amount and uniformity of coating applied. Active coating is challenging regarding the total amount of coating and its uniformity. Consequently, there is a strong demand for tools, which are able to monitor and determine the endpoint of a coating operation. In previous work, it was shown that Raman spectroscopy is an appropriate process analytical tool (PAT) to monitor an active spray coating process in a pan coater [1]. Using a multivariate model (Partial Least Squares—PLS) the Raman spectral data could be correlated with the coated amount of the API diprophylline. While the multivariate model was shown to be valid for the process in a mini scale pan coater (batch size: 3.5 kg cores), the aim of the present work was to prove the robustness of the model by transferring the results to tablets coated in a micro scale pan coater (0.5 kg).

Method

Coating experiments were performed in both, a mini scale and a micro scale pan coater. The model drug diprophylline was coated on placebo tablets. The multivariate model, established for the process in the mini scale pan coater, was applied to the Raman measurements of tablets coated in the micro scale coater for six different coating levels. Then, the amount of coating, which was predicted by the model, was compared with reference measurements using UV spectroscopy.

Results

For all six coating levels the predicted coating amount was equal to the amounts obtained by UV spectroscopy within the statistical error. Thus, it was possible to predict the total coating amount with an error smaller than 3.6%. The root mean squares of errors for calibration and prediction (root mean square of errors for calibration and prediction—RMSEC and RMSEP) were 0.335 mg and 0.392 mg, respectively, which means that the predictive power of the model is not dependent on the scale or the equipment.

Conclusion

The scale-down experiment showed that it was possible to transfer the PLS model developed on a mini scale coater to a micro scale coater.

【 授权许可】

CC BY   
© 2011 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190047438ZK.pdf 315KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:13次