期刊论文详细信息
Sensors
Embedded Palmprint Recognition System Using OMAP 3530
Linlin Shen1  Shipei Wu2  Songhao Zheng2 
[1] Shenzhen Key Laboratory of Embedded System Design, School of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
关键词: palmprint recognition;    embedded system;    Gabor wavelet;   
DOI  :  10.3390/s120201482
来源: mdpi
PDF
【 摘 要 】

We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190045948ZK.pdf 437KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:21次