期刊论文详细信息
Marine Drugs
Accumulation, Biotransformation, Histopathology and Paralysis in the Pacific Calico Scallop Argopecten ventricosus by the Paralyzing Toxins of the Dinoflagellate Gymnodinium catenatum
Amada Y. Escobedo-Lozano3  Norma Estrada2  Felipe Ascencio1  Gerardo Contreras2 
[1] Departamento de Patologia Marina, Centro de Investigaciones Biologicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico;Departamento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Av. Instituto Politecnico Nacional 2508, Mexico City, D.F. 07300, Mexico;Laboratorio de Biotoxinas Marinas, Instituto de Ciencias del Mary Limnologia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 811, Mazatlan, Sinaloa 82040, Mexico;
关键词: Argopecten ventricosus;    Gymnodinium catenatum;    histopathology;    paralyzing shellfish poison;    paralysis;   
DOI  :  10.3390/md10051044
来源: mdpi
PDF
【 摘 要 】

The dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons that are consumed and accumulated by bivalves. We performed short-term feeding experiments to examine ingestion, accumulation, biotransformation, histopathology, and paralysis in the juvenile Pacific calico scallop Argopecten ventricosus that consume this dinoflagellate. Depletion of algal cells was measured in closed systems. Histopathological preparations were microscopically analyzed. Paralysis was observed and the time of recovery recorded. Accumulation and possible biotransformation of toxins were measured by HPLC analysis. Feeding activity in treated scallops showed that scallops produced pseudofeces, ingestion rates decreased at 8 h; approximately 60% of the scallops were paralyzed and melanin production and hemocyte aggregation were observed in several tissues at 15 h. HPLC analysis showed that the only toxins present in the dinoflagellates and scallops were the N-sulfo-carbamoyl toxins (C1, C2); after hydrolysis, the carbamate toxins (epimers GTX2/3) were present. C1 and C2 toxins were most common in the mantle, followed by the digestive gland and stomach-complex, adductor muscle, kidney and rectum group, and finally, gills. Toxin profiles in scallop tissue were similar to the dinoflagellate; biotransformations were not present in the scallops in this short-term feeding experiment.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190044561ZK.pdf 4668KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:10次