期刊论文详细信息
Sensors
Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models
Chien-Chuan Lin1 
关键词: road sign recognition;    fuzzy inference;    Adaboost classifier;    support vector machine;   
DOI  :  10.3390/s120506415
来源: mdpi
PDF
【 摘 要 】

A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190044060ZK.pdf 853KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:5次