期刊论文详细信息
Pathogens
Interaction of Phenol-Soluble Modulins with Phosphatidylcholine Vesicles
Anthony C. Duong1  Gordon Y. C. Cheung1 
[1] Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
关键词: phenol-soluble modulin;    Staphylococcus aureus;    Staphylococcus epidermidis;    toxin;    vesicles;   
DOI  :  10.3390/pathogens1010003
来源: mdpi
PDF
【 摘 要 】

Several members of the staphylococcal phenol-soluble modulin (PSM) peptide family exhibit pronounced capacities to lyse eukaryotic cells, such as neutrophils, monocytes, and erythrocytes. This is commonly assumed to be due to the amphipathic, α-helical structure of PSMs, giving PSMs detergent-like characteristics and allowing for a relatively non-specific destruction of biological membranes. However, the capacities of PSMs to lyse synthetic phospholipid vesicles have not been investigated. Here, we analyzed lysis of synthetic phosphatidylcholine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC) vesicles by all Staphylococcus aureus and S. epidermidis PSMs. In addition, we investigated the lytic capacities of culture filtrates obtained from different S. aureus PSM deletion mutants toward POPC vesicles. Our results show that all staphylococcal PSMs have phospholipid vesicle-lysing activity and the capacity of S. aureus culture filtrate to lyse POPC vesicles is exclusively dependent on PSMs. Notably, we observed largely differing capacities among PSM peptides to lyse POPC vesicles. Interestingly, POPC vesicle-lytic capacities did not correlate with those previously seen for the lysis of eukaryotic cells. For example, the β-type PSMs were strongly lytic for POPC vesicles, but are known to exhibit only very low lytic capacities toward neutrophils and erythrocytes. Thus our results also suggest that the interaction between PSMs and eukaryotic membranes is more specific than previously assumed, potentially depending on additional structural features of those membranes, such as phospholipid composition or yet unidentified docking molecules.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190042932ZK.pdf 820KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:13次