期刊论文详细信息
International Journal of Molecular Sciences
Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution
Alexandre Barrozo1  Rok Borstnar1  Gaël Marloie1 
[1] Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails:
关键词: de novo enzyme design;    enzyme redesign;    protein engineering;    directed evolution;    computational enzymology;   
DOI  :  10.3390/ijms131012428
来源: mdpi
PDF
【 摘 要 】

Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies.

【 授权许可】

CC BY   
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190041597ZK.pdf 2055KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:64次