期刊论文详细信息
Molecules
Evaluation of Deoxyribonucleic Acid Toxicity Induced by the Radiopharmaceutical 99mTechnetium-Methylenediphosphonic Acid and by Stannous Chloride in Wistar Rats
José Carlos Pelielo De Mattos2  Vanessa Coutinho de Matos2  Michelle Pinheiro Rodrigues2  Marcia Betânia Nunes de Oliveira2  Flavio José S. Dantas2  Sebastião David Santos-Filho2  Mario Bernardo-Filho1 
[1] Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Rio de Janeiro 20551-030, Brazil;
关键词: stannous chloride;    99mTc-MDP;    genotoxicity;    mutagenicity;    Comet assay;    micronucleus test;   
DOI  :  10.3390/molecules171112974
来源: mdpi
PDF
【 摘 要 】

Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc) is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT) due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl2) being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT) and SnCl2 were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control), cyclophosphamide 50 mg/kg b.w. (positive control), SnCl2 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay) and 36 h after, for micronucleus test. The data showed that both SnCl2 and 99mTc-MDP-induced deoxyribonucleic acid (DNA) strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl2 in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190040870ZK.pdf 202KB PDF download
  文献评价指标  
  下载次数:68次 浏览次数:23次