Sensors | |
A Wireless Sensor Enabled by Wireless Power | |
Da-Sheng Lee2  Yu-Hong Liu1  | |
[1] Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan; E-Mails:;Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, No. 1, Sec. 3,Chung-Hsiao E. Rd., Taipei 106, Taiwan | |
关键词: wireless sensor; wireless power; chip-type sensor; UHF RFID reader; wireless sensor network; | |
DOI : 10.3390/s121216116 | |
来源: mdpi | |
【 摘 要 】
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.
【 授权许可】
CC BY
© 2012 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190040260ZK.pdf | 1035KB | download |