Symmetry | |
Non-Crystallographic Symmetry in Packing Spaces | |
Valery G. Rau2  Leonty A. Lomtev1  | |
[1] Joint Stock Company “Magneton”, Kuibyshev St., 26, Vladimir 600026, Russia; E-Mail:;Vladimir State University, Gorkogo St., 87, Vladimir 600000, Russia; E-Mail: | |
关键词: tilings; finite groups of permutations; packing spaces; polyominoes; quaternion group; cayley tables; Pauli matrices; dirac matrices; | |
DOI : 10.3390/sym5010054 | |
来源: mdpi | |
【 摘 要 】
In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups), in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes) and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190039544ZK.pdf | 2516KB | download |