期刊论文详细信息
Symmetry
Non-Crystallographic Symmetry in Packing Spaces
Valery G. Rau2  Leonty A. Lomtev1 
[1] Joint Stock Company “Magneton”, Kuibyshev St., 26, Vladimir 600026, Russia; E-Mail:;Vladimir State University, Gorkogo St., 87, Vladimir 600000, Russia; E-Mail:
关键词: tilings;    finite groups of permutations;    packing spaces;    polyominoes;    quaternion group;    cayley tables;    Pauli matrices;    dirac matrices;   
DOI  :  10.3390/sym5010054
来源: mdpi
PDF
【 摘 要 】

In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups), in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes) and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order N characterizes discrete deformation transformations of the structure.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190039544ZK.pdf 2516KB PDF download
  文献评价指标  
  下载次数:29次 浏览次数:14次