期刊论文详细信息
International Journal of Molecular Sciences
Study of the UTMD-Based Delivery System to Induce Cervical Cancer Cell Apoptosis and Inhibit Proliferation with shRNA targeting Survivin
Zhi-Yi Chen1  Kun Liang2  Yan Lin1 
[1] Department of Medical Ultrasound, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; E-Mails:;Guangzhou Research Institute of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Institute of Obstetrics and Gynecology, Guangzhou 510150, China; E-Mail:
关键词: ultrasound;    microbubble;    apoptosis;    gene therapy;    RNA interference;    non-viral vector;   
DOI  :  10.3390/ijms14011763
来源: mdpi
PDF
【 摘 要 】

Apoptosis induction by short hairpin RNA (shRNA) expression vectors could be an efficient and promising strategy for cancer gene therapy. Ultrasound-targeted microbubble destruction (UTMD) is an appealing technique. In this study, we investigated the apoptosis induction and suppression of cell proliferation in vivo transfected by the UTMD-based shRNA delivery system. Nude mice with transplanted tumors of cervical cancer were randomly arranged into three groups: control group, plasmid injection and ultrasound (P + US), P + UTMD group. Expressions of Survivin and proliferating cell nuclear antigen (PCNA), Bcl-2, Bax, Caspase-3, Ki-67, nucleostemin (NS) were investigated by immunohistochemistry. Furthermore, microvessel density (MVD) was detected by CD34 protein expressions and apoptotic index (AI) was measured by TUNEL. As compared with those in the control and P + US groups, protein expressions of PCNA, Ki-67, Bcl-2, Survivin and NS in P + UTMD groups were down-regulated markedly, while those of Bax, Caspase-3 were up-regulated significantly (p < 0.05). MVD decreased significantly, whereas AI increased remarkably (p < 0.05). We suggested that UTMD-based shRNA delivery system could induce apoptosis and inhibit proliferation significantly, without causing any apparently adverse effect, representing a new, promising technology that would be used in the future gene therapy and research.

【 授权许可】

CC BY   
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190039243ZK.pdf 1468KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:18次