期刊论文详细信息
Buildings
Theoretical and Experimental Investigation of a Heat Exchanger Suitable for a Hybrid Ventilation System
Henrik Davidsson1  Ricardo Bernardo2 
[1] Department of Architecture and Built Environment, Division of Energy and Building Design, Lund University, Box 118, 221 00 Lund, Sweden; E-Mail
关键词: hybrid ventilation;    heat recovery;    low pressure drop;   
DOI  :  10.3390/buildings3010018
来源: mdpi
PDF
【 摘 要 】

A key component in low energy houses is the heat recovery from the ventilation air. Over recent years, the most frequently used ventilation type is the mechanical ventilation with heat recovery. This kind of ventilation results in high heat recovery but does unfortunately consume a considerable amount of electrical energy. Natural or hybrid ventilation has the potential to consume less electricity but normally lacks heat recovery, leading to high-energy consumption for heating, and potentially low comfort. This article describes an investigation of a natural/hybrid ventilation system equipped with heat recovery. One of the key challenges in designing the heat exchanger is to keep the pressure drop low. At the same time the heat recovery rate has to be high. The results from the measurements show that it is possible to design a water-to-air heat exchanger with a temperature efficiency of approximately 80% with a pressure drop of about 1 Pa at air flows corresponding to 0.35 L/(s∙m²) building area. This type of ventilation system has the potential to offer a high thermal comfort, high heat recovery rate at the same time as the electrical consumption from fans is kept low. Old buildings with a natural ventilation system without heat recovery could also be retrofitted with this type of ventilation system.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190039014ZK.pdf 604KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:34次