Modelling Niche Differentiation of Co-Existing, Elusive and Morphologically Similar Species: A Case Study of Four Macaque Species in Nakai-Nam Theun National Protected Area, Laos
We investigated the niche separation of four macaque species (Macaca arctoides, M. assamensis, M. leonina, M. mulatta) occurring within Nakai-Nam Theun National Protected Area, central-eastern Laos using the environmental niche modelling software MaxEnt. The respective suitable habitat predicted for each species reveals niche segregation between the four species with a gradual geographical distribution following an environmental gradient of, notably, temperature, precipitation, elevation and slope within the study area. This means that the four species seem adapted to different ecological conditions within the area. This information has implications for future research on these species and for their management and conservation.
Abstract
Species misidentification often occurs when dealing with co-existing and morphologically similar species such as macaques, making the study of their ecology challenging. To overcome this issue, we use reliable occurrence data from camera-trap images and transect survey data to model their respective ecological niche and potential distribution locally in Nakai-Nam Theun National Protected Area (NNT NPA), central-Eastern Laos. We investigate niche differentiation of morphologically similar species using four sympatric macaque species in NNT NPA, as our model species: rhesus Macaca mulatta (Taxonomic Serial Number, TSN 180099), Northern pig-tailed M. leonina (TSN not listed); Assamese M. assamensis (TSN 573018) and stump-tailed M. arctoides (TSN 573017). We examine the implications for their conservation. We obtained occurrence data of macaque species from systematic 2006–2011 camera-trapping surveys and 2011–2012 transect surveys and model their niche and potential distribution with MaxEnt software using 25 environmental and topographic variables. The respective suitable habitat predicted for each species reveals niche segregation between the four species with a gradual geographical distribution following an environmental gradient within the study area. Camera-trapping positioned at many locations can increase elusive-species records with a relatively reduced and more systematic sampling effort and provide reliable species occurrence data. These can be used for environmental niche modelling to study niche segregation of morphologically similar species in areas where their distribution remains uncertain. Examining unresolved species’ niches and potential distributions can have crucial implications for future research and species’ management and conservation even in the most remote regions and for the least-known species.