Energies | |
Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks | |
Luis Hernandez1  Carlos Baladrón2  Javier M. Aguiar2  Belén Carro2  Antonio J. Sanchez-Esguevillas2  | |
[1] Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Autovía de Navarra A15, salida 56, Lubia 42290, Soria, Spain; E-Mail:;Universidad de Valladolid, Escuela Técnica Superior de Ingenieros de Telecomunicación, Campus Miguel Delibes, Paseo de Belén 15, Valladolid 47011, Spain; E-Mails: | |
关键词: artificial neural network; distributed intelligence; short-term load forecasting; smart grid; microgrid; multilayer perceptron; | |
DOI : 10.3390/en6031385 | |
来源: mdpi | |
【 摘 要 】
Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year,
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190038112ZK.pdf | 1090KB | download |