期刊论文详细信息
Water
Influence of Irrigation Water Discharge Frequency on Soil Salt Removal and Rice Yield in a Semi-Arid and Saline-Sodic Area
Yueqing Chen1  Guangxin Zhang1  Y. Jun Xu2 
[1] Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; E-Mails:;School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; E-Mail:
关键词: soil salinity control;    irrigation/discharge schedule;    irrigation water management;    rice production;    Songnen Plain;   
DOI  :  10.3390/w5020578
来源: mdpi
PDF
【 摘 要 】

Irrigation practice for rice culture can be especially challenging in areas with limited water supply and soil salinization. In this study, we carried out a field experiment to assess the effects of different water discharge frequencies on soil salt content, rice yield and water use efficiency on a saline-sodic soil in a semi-arid region of Northeast China. The experiment comprised of three frequency levels of discharge [9-time (I-9-30), 6-time (I-6-30) and 3-time (I-3-30) discharge, all followed with a 30-mm irrigation] in comparison with the traditional irrigation practice of 2-time discharge followed with an 80-mm irrigation (I-2-80). Our initial hypothesis was that increasing discharge frequency would increase both salt reduction and rice yield. Daily precipitation was recorded by a nearby weather station, and evapotranspiration and soil water percolation rates were measured at experimental sites using soil pits. The measurements were used to establish a water balance for each treatment. Our results showed that soil salt reduction increased with the increasing discharge frequency at a 30-mm irrigation water depth. The 9-time discharge reduced a large amount of soil salt (995.0 kg ha−1) after five months of the study. Rice yield also increased with the increasing discharge frequency with a 30-mm irrigation water depth; however, when compared to the traditional 2-time discharge followed with an 80-mm irrigation, rice yield at the sites with more frequent discharge (i.e., I-9-30, I-6-30 and I-3-30) was 11%–18% lower. Because of this, rice yield and irrigation water use efficiency were significantly higher under the traditional practice of high-irrigation with low-frequency discharge (I-2-80) than under I-9-30, I-6-30 and I-3-30. These results indicate a need for a trade-off amongst salt reduction, rice yield and water use when considering selection of irrigation and discharge schedules.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190036482ZK.pdf 620KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:31次