International Journal of Molecular Sciences | |
Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration | |
Jiansheng Su1  Hongzhen Xu2  Jun Sun2  Xue Gong2  | |
[1] Institute of Prosthodontics, School of Stomatology, Tongji University, 399 Yanchang Road, Shanghai 200092, China; | |
关键词:
bone morphogenetic protein-2;
basic fibroblast growth factor;
tissue engineering;
bone defect;
poly(lactic- |
|
DOI : 10.3390/ijms140612714 | |
来源: mdpi | |
【 摘 要 】
The aim of this study was to investigate the feasibility and advantages of the dual delivery of bone morphogenetic protein-2 (BMP-2) and basic fibroblast growth factor (bFGF) from nano-composite scaffolds (PLGA/PCL/nHA) loaded with vascular stents (PLCL/Col/nHA) for large bone defect regeneration in rabbit mandibles. Thirty-six large bone defects were repaired in rabbits using engineering bone composed of allogeneic bone marrow mesenchymal stem cells (BMSCs), bFGF, BMP-2 and scaffolds composed of PLGA/PCL/nHA loaded with PLCL/Col/nHA. The experiments were divided into six groups: BMSCs/bFGF/BMP-2/scaffold, BMSCs/BMP-2/scaffold, BMSCs/bFGF/scaffold, BMSCs/scaffold, scaffold alone and no treatment. Sodium alginate hydrogel was used as the carrier for BMP-2 and bFGF and its features, including gelling, degradation and controlled release properties, was detected by the determination of gelation and degradation time coupled with a controlled release study of bovine serum albumin (BSA). AlamarBlue assay and alkaline phosphatase (ALP) activity were used to evaluate the proliferation and osteogenic differentiation of BMSCs in different groups. X-ray and histological examinations of the samples were performed after 4 and 12 weeks post-implantation to clarify new bone formation in the mandible defects. The results verified that the use of sodium alginate hydrogel as a controlled release carrier has good sustained release ability, and the combined application of bFGF and BMP-2 could significantly promote the proliferation and osteogenic differentiation of BMSCs (
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190035316ZK.pdf | 2957KB | download |