Brain Sciences | |
Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain | |
关键词: neurotransmitters; behavior; brain; dopamine; serotonin; nigrostriatal pathway; mesocorticolimbic pathway; cocaine; dystonia; spinal cord injuries; central pattern generators; movement disorders; temporal synchrony; atemporal synchrony; drug addiction; psychiatric disorders; neurodegenerative diseases; | |
DOI : 10.3390/brainsci3020992 | |
来源: mdpi | |
【 摘 要 】
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190035225ZK.pdf | 3514KB | download |