期刊论文详细信息
Entropy
Towards Realising Secure and Efficient Image and Video Processing Applications on Quantum Computers
关键词: quantum computation;    quantum image processing (QIP);    quantum circuit;    FRQI quantum image;    quantum algorithm;    quantum watermarking;    quantum movie: quantum computing hardware;    physical realisation of quantum computation;   
DOI  :  10.3390/e15082874
来源: mdpi
PDF
【 摘 要 】

Exploiting the promise of security and efficiency that quantum computing offers, the basic foundations leading to commercial applications for quantum image processing are proposed. Two mathematical frameworks and algorithms to accomplish the watermarking of quantum images, authentication of ownership of already watermarked images and recovery of their unmarked versions on quantum computers are proposed. Encoding the images as 2n-sized normalised Flexible Representation of Quantum Images (FRQI) states, with n-qubits and 1-qubit dedicated to capturing the respective information about the colour and position of every pixel in the image respectively, the proposed algorithms utilise the flexibility inherent to the FRQI representation, in order to confine the transformations on an image to any predetermined chromatic or spatial (or a combination of both) content of the image as dictated by the watermark embedding, authentication or recovery circuits. Furthermore, by adopting an apt generalisation of the criteria required to realise physical quantum computing hardware, three standalone components that make up the framework to prepare, manipulate and recover the various contents required to represent and produce movies on quantum computers are also proposed. Each of the algorithms and the mathematical foundations for their execution were simulated using classical (i.e., conventional or non-quantum) computing resources, and their results were analysed alongside other longstanding classical computing equivalents. The work presented here, combined together with the extensions suggested, provide the basic foundations towards effectuating secure and efficient classical-like image and video processing applications on the quantum-computing framework.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190034284ZK.pdf 3725KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:40次