International Journal of Molecular Sciences | |
Nanoconfinement-Induced Structures in Chiral Liquid Crystals | |
Michael Melle1  Madlona Theile1  Carol K. Hall2  | |
[1] Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany; E-Mails:;Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; E-Mail: | |
关键词: liquid crystal; chirality; cholesteric and blue phases; confinement; Monte Carlo simulation; | |
DOI : 10.3390/ijms140917584 | |
来源: mdpi | |
【 摘 要 】
We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase.
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190033688ZK.pdf | 14928KB | download |