期刊论文详细信息
Entropy
Examples of the Application of Nonparametric Information Geometry to Statistical Physics
关键词: information geometry;    exponential manifold;    statistical connections;    Boltzmann-Gibbs entropy;    Boltzmann operator;   
DOI  :  10.3390/e15104042
来源: mdpi
PDF
【 摘 要 】

We review a nonparametric version of Amari’s information geometry in which the set of positive probability densities on a given sample space is endowed with an atlas of charts to form a differentiable manifold modeled on Orlicz Banach spaces. This nonparametric setting is used to discuss the setting of typical problems in machine learning and statistical physics, such as black-box optimization, Kullback-Leibler divergence, Boltzmann-Gibbs entropy and the Boltzmann equation.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190033499ZK.pdf 278KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次