期刊论文详细信息
Energies
Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters
Najam ul Hasan1  Waleed Ejaz1  Mahin K. Atiq1 
[1] Department of Information and Communication Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Korea;
关键词: reactive power;    smart meter;    recursive pyramid algorithm;    discrete wavelet transform;   
DOI  :  10.3390/en6094721
来源: mdpi
PDF
【 摘 要 】

Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT) for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N) word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L), where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190033386ZK.pdf 630KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:24次