期刊论文详细信息
Entropy
Fractional Heat Conduction in an Infinite Medium with a Spherical Inclusion
关键词: fractional calculus;    non-Fourier heat conduction;    fractional diffusion-wave equation;    perfect thermal contact;    Laplace transform;    Mittag-Leffler function;    Wright function;    Mainardi function;   
DOI  :  10.3390/e15104122
来源: mdpi
PDF
【 摘 要 】

The problem of fractional heat conduction in a composite medium consisting of a spherical inclusion and a matrix being in perfect thermal contact at is considered. The heat conduction in each region is described by the time-fractional heat conduction equation with the Caputo derivative of fractional orde and respectively. The Laplace transform with respect to time is used. The approximate solution valid for small values of time is obtained in terms of the Mittag-Leffler, Wright, and Mainardi functions.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190032816ZK.pdf 229KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:10次