期刊论文详细信息
Algorithms
Pattern-Guided k-Anonymity
Robert Bredereck2  André Nichterlein1 
[1] Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, 10587, Germany;
关键词: NP-hardness;    parameterized complexity;    integer linear programming;    exact algorithms;    heuristics;    experiments;   
DOI  :  10.3390/a6040678
来源: mdpi
PDF
【 摘 要 】

We suggest a user-oriented approach to combinatorial data anonymization. A data matrix is called k-anonymous if every row appears at least k times—the goal of the NP-hard k-Anonymity problem then is to make a given matrix k-anonymous by suppressing (blanking out) as few entries as possible. Building on previous work and coping with corresponding deficiencies, we describe an enhanced k-anonymization problem called Pattern-Guided k-Anonymity, where the users specify in which combinations suppressions may occur. In this way, the user of the anonymized data can express the differing importance of various data features. We show that Pattern-Guided k-Anonymity is NP-hard. We complement this by a fixed-parameter tractability result based on a “data-driven parameterization” and, based on this, develop an exact integer linear program (ILP)-based solution method, as well as a simple, but very effective, greedy heuristic. Experiments on several real-world datasets show that our heuristic easily matches up to the established “Mondrian” algorithm for k-Anonymity in terms of the quality of the anonymization and outperforms it in terms of running time.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190032414ZK.pdf 288KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:9次