期刊论文详细信息
Molecules
Effect of Pressure on Thermal Stability of G-Quadruplex DNA and Double-Stranded DNA Structures
Shuntaro Takahashi1 
[1] Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; E-Mail:
关键词: DNA;    G-quadruplex;    high pressure;    thermodynamics;    volumetric analyses;    hydration;    molecular crowding;   
DOI  :  10.3390/molecules181113297
来源: mdpi
PDF
【 摘 要 】

Pressure is a thermodynamic parameter that can induce structural changes in biomolecules due to a volumetric decrease. Although most proteins are denatured by pressure over 100 MPa because they have the large cavities inside their structures, the double-stranded structure of DNA is stabilized or destabilized only marginally depending on the sequence and salt conditions. The thermal stability of the G-quadruplex DNA structure, an important non-canonical structure that likely impacts gene expression in cells, remarkably decreases with increasing pressure. Volumetric analysis revealed that human telomeric DNA changed by more than 50 cm3 mol−1 during the transition from a random coil to a quadruplex form. This value is approximately ten times larger than that for duplex DNA under similar conditions. The volumetric analysis also suggested that the formation of G-quadruplex DNA involves significant hydration changes. The presence of a cosolute such as poly(ethylene glycol) largely repressed the pressure effect on the stability of G-quadruplex due to alteration in stabilities of the interactions with hydrating water. This review discusses the importance of local perturbations of pressure on DNA structures involved in regulation of gene expression and highlights the potential for application of high-pressure chemistry in nucleic acid-based nanotechnology.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190032277ZK.pdf 1527KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:16次