期刊论文详细信息
Remote Sensing
Knowledge-Based Modeling of Buildings in Dense Urban Areas by Combining Airborne LiDAR Data and Aerial Images
关键词: 3D building modeling;    dense urban areas;    airborne LiDAR;    aerial image;    image segmentation;   
DOI  :  10.3390/rs5115944
来源: mdpi
PDF
【 摘 要 】

In this paper, a knowledge-based algorithm is proposed for automatically generating three-dimensional (3D) building models in dense urban areas by using airborne light detection and ranging (LiDAR) data and aerial images. Automatic 3D building modeling using LiDAR is challenging in dense urban areas, in which houses are typically located close to each other and their heights are similar. This makes it difficult to separate point clouds into individual buildings. A combination of airborne LiDAR and aerial images can be an effective approach to resolve this issue. Information about individual building boundaries, derived by segmentation of images, can be utilized for modeling. However, shadows cast by adjacent buildings cause segmentation errors. The algorithm proposed in this paper uses an improved segmentation algorithm (Susaki, J. 2012.) that functions even for shadowed buildings. In addition, the proposed algorithm uses assumptions about the geometry of building arrangement to calculate normal vectors to candidate roof segments. By considering the segmented regions and the normals, models of four common roof types—gable-roof, hip-roof, flat-roof, and slant-roof buildings—are generated. The proposed algorithm was applied to two areas of Higashiyama ward, Kyoto, Japan, and the modeling was successful even in dense urban areas.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190031716ZK.pdf 2862KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:8次