期刊论文详细信息
Processes
A Multiwell Disc Appliance Used to Deliver Quantifiable Accelerations and Shear Stresses at Sonic Frequencies
Sarah A. Klemuk1  Sarah Vigmostad2  Kalyan Endapally2  Andrew P. Wagner2 
[1] Communication Sciences and Disorders, the University of Iowa, Iowa City, IA 52242, USA; E-Mail:;Department of Biomedical Engineering, the University of Iowa, Iowa City, IA 52242, USA; E-Mails:
关键词: bioreactor;    vocal fold;    vibration;    smooth particle hydrodynamics;    rheometer;   
DOI  :  10.3390/pr2010071
来源: mdpi
PDF
【 摘 要 】

To mimic in vivo vibration of vocal fold cells, we studied the controllability and range of frequency, acceleration, duration, and shear stress in a new bioreactor attachment. The custom multiwell disc appliance fits into a commercially built rheometer, together termed a torsional rheometer bioreactor (TRB). Previous attachments to the TRB were capable of 50–100 Hz vibrations at relatively high strains but were limited to single-sample experiments. The TRB-multiwell disc system accommodates 20 samples in partially fluid-filled wells in an aseptic environment delivering three different acceleration conditions to different samples simultaneously. Frequency and amplitude used to calculate acceleration along with duration and shear stress were controllable and quantifiable using a combination of built-in rheometer sensors, manufacturer software, and smooth particle hydrodynamics (SPH) simulations. Computed shear stresses at the well bottom using SPH in two and three dimensions were verified with analytical approximations. Results demonstrate capabilities of the TRB-multiwell disc system that, when combined with computational modeling, provide quantifiable vibration parameters covering frequencies 0.01–250 Hz, accelerations of 0.02–300 m/s2, and shear stresses of 0.01–1.4 Pa. It is well-suited for studying cell function underlying vocal fold lamina propria homeostasis, inflammation, and wound healing under differential vibration conditions.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190030082ZK.pdf 494KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:20次