期刊论文详细信息
Energies
An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost
Gustavo Callou1  João Ferreira1  Paulo Maciel1  Dietmar Tutsch2 
[1] Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife 50740-560, Brazil; E-Mails:;Automation/Computer Science, University of Wuppertal, Bldg. FC.2.12 Rainer-Gruenter-Str. 21, Wuppertal 42119, Germany; E-Mail:
关键词: sustainability;    energy consumption;    exergy;    dependability;    optimization;   
DOI  :  10.3390/en7010238
来源: mdpi
PDF
【 摘 要 】

Data centers have evolved dramatically in recent years, due to the advent of social networking services, e-commerce and cloud computing. The conflicting requirements are the high availability levels demanded against the low sustainability impact and cost values. The approaches that evaluate and optimize these requirements are essential to support designers of data center architectures. Our work aims to propose an integrated approach to estimate and optimize these issues with the support of the developed environment, Mercury. Mercury is a tool for dependability, performance and energy flow evaluation. The tool supports reliability block diagrams (RBD), stochastic Petri nets (SPNs), continuous-time Markov chains (CTMC) and energy flow (EFM) models. The EFM verifies the energy flow on data center architectures, taking into account the energy efficiency and power capacity that each device can provide (assuming power systems) or extract (considering cooling components). The EFM also estimates the sustainability impact and cost issues of data center architectures. Additionally, a methodology is also considered to support the modeling, evaluation and optimization processes. Two case studies are presented to illustrate the adopted methodology on data center power systems.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190029976ZK.pdf 2116KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:42次