期刊论文详细信息
International Journal of Environmental Research and Public Health
Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications
José A. Centeno3  Duane A. Rogers3  Gijsbert B. van der Voet3  Elisa Fornero3  Lingsu Zhang3  Florabel G. Mullick3  Gail D. Chapman1  Ayodele O. Olabisi1  Dean J. Wagner1  Alexander Stojadinovic2 
[1] Naval Medical Research Unit Dayton, Wright Patterson AFB, OH 45433, USA; E-Mails:;Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington, DC 20307, USA; E-Mail:;Division of Biophysical Toxicology, Joint Pathology Center, Silver Spring, MD 20910, USA; E-Mails:
关键词: metal-fragments;    depleted-uranium (DU);    tungsten;    heavy metal tungsten-alloys (HMTA);    lead (Pb);    improvised-explosive device (IED);    explosively-formed projectile (EFP);    X-ray fluorescence spectrometry (XRF);    inductively-coupled-plasma mass-spectrometry(ICP-MS);    confocal laser Raman-microspectroscopy (CLRM);    scanning-electron-microscopy energy-dispersive X-ray analysis (SEM-EDXA);    elemental analysis;   
DOI  :  10.3390/ijerph110201261
来源: mdpi
PDF
【 摘 要 】

Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190029561ZK.pdf 3595KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:21次