期刊论文详细信息
Remote Sensing
Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China
Liying Geng1  Mingguo Ma1  Xufeng Wang1  Wenping Yu1  Shuzhen Jia1 
[1] Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China; E-Mails:
关键词: MODIS;    AVHRR;    PAL;    GIMMS;    SPOT VGT;    NDVI;    noise reduction;    reconstruction techniques;   
DOI  :  10.3390/rs6032024
来源: mdpi
PDF
【 摘 要 】

More than 20 techniques have been developed to de-noise time-series vegetation index data from different satellite sensors to reconstruct long time-series data sets. Although many studies have compared Normalized Difference Vegetation Index (NDVI) noise-reduction techniques, few studies have compared these techniques systematically and comprehensively. This study tested eight techniques for smoothing different vegetation types using different types of multi-temporal NDVI data (Advanced Very High Resolution Radiometer (AVHRR) (Global Inventory Modeling and Map Studies (GIMMS) and Pathfinder AVHRR Land (PAL), Satellite Pour l’ Observation de la Terre (SPOT) VEGETATION (VGT), and Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra)) with the ultimate purpose of determining the best reconstruction technique for each type of vegetation captured with four satellite sensors. These techniques include the modified best index slope extraction (M-BISE) technique, the Savitzky-Golay (S-G) technique, the mean value iteration filter (MVI) technique, the asymmetric Gaussian (A-G) technique, the double logistic (D-L) technique, the changing-weight filter (CW) technique, the interpolation for data reconstruction (IDR) technique, and the Whittaker smoother (WS) technique. These techniques were evaluated by calculating the root mean square error (RMSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). The results indicate that the S-G, CW, and WS techniques perform better than the other tested techniques, while the IDR, M-BISE, and MVI techniques performed worse than the other techniques. The best de-noise technique varies with different vegetation types and NDVI data sources. The S-G performs best in most situations. In addition, the CW and WS are effective techniques that were exceeded only by the S-G technique. The assessment results are consistent in terms of the three evaluation indexes for GIMMS, PAL, and SPOT data in the study area, but not for the MODIS data. The study will be very helpful for choosing reconstruction techniques for long time-series data sets.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190028435ZK.pdf 788KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:23次