期刊论文详细信息
Molecules
Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects
Mihai V. Putz1 
[1] Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR, Biology-Chemistry Department, Faculty of Chemistry, Biology, Geography, West University of Timişoara, Pestalozzi Street No.16, Timişoara, RO-300115, Romania
关键词: bondons;    electronegativity;    graphene;    silicene;    germanene;    phase transition;    4th order quantum propagator;   
DOI  :  10.3390/molecules19044157
来源: mdpi
PDF
【 摘 要 】

This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190027336ZK.pdf 1023KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:29次