期刊论文详细信息
Sensors
IMU-Based Joint Angle Measurement for Gait Analysis
Thomas Seel1  Jorg Raisch1 
[1] Control Systems Group (Fachgebiet Regelungssysteme), Technische Universitat Berlin, 10623 Berlin, Germany; E-Mails:
关键词: inertial measurement units;    gait analysis;    gyroscopes and accelerometers;    avoid magnetometers;    exploit kinematic constraints;    sensor-to-segment mounting;    joint axis and position identification;    joint angle measurement;    validation against optical gait analysis;    validation on prosthetic and human leg;   
DOI  :  10.3390/s140406891
来源: mdpi
PDF
【 摘 要 】

This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190026999ZK.pdf 2775KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:18次