期刊论文详细信息
Entropy
An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
Badong Chen1  Guangmin Wang1  Nanning Zheng1 
[1] Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China; E-Mails:
关键词: estimation;    minimum error entropy;    Renyi entropy;    information potential;   
DOI  :  10.3390/e16042223
来源: mdpi
PDF
【 摘 要 】

The minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are imposed. A recent paper has proved that if the conditional density is conditionally symmetric and unimodal (CSUM), then the optimal MEE estimate (with Shannon entropy) equals the conditional median. In this study, we extend this result to the generalized MEE estimation where the optimality criterion is the Renyi entropy or equivalently, the α-order information potential (IP).

MSC Codes: 62B10

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190026646ZK.pdf 338KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:10次