期刊论文详细信息
Entropy
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
Hassan Nasser1 
关键词: neural coding;    Gibbs distribution;    maximum entropy;    convex duality;    spatio-temporal constraints;    large-scale analysis;    spike train;    MEA recordings;   
DOI  :  10.3390/e16042244
来源: mdpi
PDF
【 摘 要 】

We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190026522ZK.pdf 1784KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:13次