期刊论文详细信息
Remote Sensing
Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery
Nasrullah Zaini1  Freek van der Meer1 
[1] Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; E-Mails:
关键词: SisuCHEMA hyperspectral data;    carbonate rocks;    mineral mixtures;    SWIR reflectance spectra;    spectral recognition approaches;    geochemical analysis;   
DOI  :  10.3390/rs6054149
来源: mdpi
PDF
【 摘 要 】

The development of advanced laboratory-based imaging hyperspectral sensors, such as SisuCHEMA, has created an opportunity to extract compositional information of mineral mixtures from spectral images. Determining proportions of minerals on rock surfaces based on spectral signature is a challenging approach due to naturally-occurring minerals that exist in the form of intimate mixtures, and grain size variations. This study demonstrates the application of SisuCHEMA hyperspectral data to determine mineral components in hand specimens of carbonate rocks. Here, we applied wavelength position, spectral angle mapper (SAM) and linear spectral unmixing (LSU) approaches to estimate the chemical composition and the relative abundance of carbonate minerals on the rock surfaces. The accuracy of these classification methods and correlation between mineral chemistry and mineral spectral characteristics in determining mineral constituents of rocks are also analyzed. Results showed that chemical composition (Ca-Mg ratio) of carbonate minerals at a pixel (e.g., sub-grain) level can be extracted from the image pixel spectra using these spectral analysis methods. The results also indicated that the spatial distribution and the proportions of calcite-dolomite mixtures on the rock surfaces vary between the spectral methods. For the image shortwave infrared (SWIR) spectra, the wavelength position approach was found to be sensitive to all compositional variations of carbonate mineral mixtures when compared to the SAM and LSU approaches. The correlation between geochemical elements and spectroscopic parameters also revealed the presence of these carbonate mixtures with various chemical compositions in the rock samples. This study concludes that the wavelength position approach is a stable and reproducible technique for estimating carbonate mineral chemistry on the rock surfaces using laboratory-based hyperspectral data.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190026246ZK.pdf 4473KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:16次